Research of High Gradient Acceleration Technology for Future Accelerators

US/Japan cooperation

1 March 2012 Toshiyasu Higo (KEK)

US/Japan cooperation is a key for worldwide collaboration

Three-year plan

- 2011
 - KEK prepared basic study environment
 - Both labs. continued
 - Prototype fabrication TD24R05
 - Evaluation T24 and TD24
- 2012
 - Start basic research in a simple geoetry
 - Test prototype structures
 - TD24 and later TD24R05
- 2013
 - Understand the trigger mechanism
 - Make rough sketch of high gradient section for LC

Last year activities under US-Japan

- Twin prototype structures (TD24) have been made.
- This pair of structures now being tested show the feasibility of 80MV/m in copper.
- Studies in simple geometries were conducted at SLAC.
- System for tests with simple geometry was prepared at KEK.
- Magnetic field showed important role in breakdown rate.
- High magnetic field area showed indication of electromigration.
- Standing wave acceleration design is in progress at SLAC.

Extending key activities supported by US-Japan

- KEK
 - Parts fabrication
 - Long-term high gradient test
 - Specific tests in simple geometry
- SLAC
 - Chemical polishing
 - Hydrogen furnace bonding and vacuum baking
 - Various specific high power tests
- US high gradient collaboration
 - Exchange of ideas and experimental results

Who are contributing in what

Japan

- Main lab = KEK
 - Accelerator high gradient test
 - Nextef
 - Shield-B
 - Mechanical engineering center
 - Structure cell production
 - Test sample production

- **US** Main lab = SLAC
- NLCTA high gradient test
 - Station 1, 2
- ASTA high gradient test
 - Single-cell
 - Pulse heating
- Klystron shop
 - Structure fabrication

 Discussion and information exchange is important
 US-HG collaboration

SLAC/KEK test flow (same as before)

CLIC test structures; fabrication and test T18→TD18→T24→TD24

undamped

2011

T18_Disk_#2

damped

2009

High-gradient test at Nextef

Initial evaluation toward 100MV/m

High magnetic field in damped cell

May be responsible to high breakdown rate

Reduced magnetic field 18 \rightarrow 24

State of the art for LC undamped T24

T24 was found much better than T18

Faster processing Reached low breakdown rate

T24#3 Breakdown rate at 252nsec

How about breakdown rate if T24 parameters applied to damped TD24

Param.	Unit	T24	TD24
<eacc></eacc>	A/m	100	100
Es/Ea	1	1.95	1.95
Es	MV/m	195	195
Hs/Ea	mA/V	2.6	4.1
Hs	kA/m	260 💻	410

Still high magnetic field in damped

Difference in processing speed among four structures Breakdowns are needed or can be avoided?

Preliminary and at 240ns FLT pulse

90 MV/m seems feasible in damped structure TD24.

肥後 機構の意見交換会(2月13日)

Where breakdown triggers come from high magnetic field area?

Pulse surface heated damage.

Electromigration and related arcs at Hs?

Surface current is large! 400kA/m over 0.5µm thick → 1A/µm² >> Problem in IC (~0.1A/µm²)

Electromigration?

Direct electric field a=screening factor

 $F_d = aZeE$

Conduction electron wind σ =collision cross section λ =mean free path

 $F_w = -en_e\lambda\sigma_i E$

Diffusion process Q=Activation energy $D = D_0 \exp(-Q/RT)$

Crystal defect, boundary, void, etc.

We need to understand physical mechanism of vacuum arc

- Possible and proposed mechanisms
 - Sharp edge \rightarrow <u>Es enhancement</u> \rightarrow FE
 - − Es → <u>Maxwell's stress</u> → pull up crystal → FE → plasma development
 - Hs → pulse heating → <u>fatigue</u> → edges and ruptures
 → high Es
 - Hs \rightarrow high current density \rightarrow <u>electromigration</u>
- BD Trigger and evolution to discharge
 - Understand mechanism
 - Estimate <u>degree of damage</u>

How to study mechanism and develop suppression technology

- Prototype test
 - GLC/NLC \rightarrow CLIC
- Study in simple geometry
 - Single-cell setup, waveguide, DC, etc.
- Study with simple material
 - Test setup with large-grain material
- Improve in the area such as
 - Geometry, fabrication, assembly technique
 - Installation with after-assembly cleaning
 - Processing method

Basic study setups

High field only at center cell

Clean setup

Large grain material Simple crystal characteristics

.9167e+

Magnetic field (test at SLAC)

V. Dolgashev, AAS 2010

Magnetic field plays an important role, rather than geometry.

High Hs in nominal heavy damped cell

Test setup being prepared at KEK

Study items in preparation or in mind

- Explore basic research in a simple geometry
- Center cell is such as the following
 - 1. Standard: KEK made SLAC test
 - 2. Nominal: Heavily-damped
 - 3. Made of large-grain material
 - 4. Undamped but all-milled
 - 5. All milled quadrant type
- These are under preparation

6. Choke-mode type

Other basic tests ongoing and may also happen in next year

In-situ inspection

VAC

Hydrogen

Heat treatment

Material:

Clad (Cu/SS, Cu/Mo)

Crystal orientation SEM & X-ray Field Emission Microscope

2011/12/20

US/Japan Workshop (Toshi Higo)

Nextef expansion at KEK

RF distribution to shield-B at KEK was almost completed

Now ready for test at KEK in JFY2012

From a single klystron

Inside shield-B

prepared at KEK

SLAC study toward much higher gradient

SW study at SLAC

Cu/Moly clamp prepared by KEK

~ 24 cm

Scanning field emission microscope at KEK

Field emission and surface of crystal characteristics.

Summary and conclusion

JFY2011:

- Roughly <u>80MV/m was found feasible in copper damped structure</u>, TD24.
- <u>Magnetic field</u> and associated high current on a crystal structure play an important role.
- <u>Basic study environments</u> were prepared at KEK.

JFY2012:

- Start <u>test with simple geometry cavity</u> at Shield-B in KEK.
- Continue prototype structure fabrication and test.
 JFY2013:
- Based on above studies to understand the physics on <u>breakdown trigger</u>.
- Propose a <u>possible RF system</u> for high energy machine.

Background:

 US pursuits <u>real high gradient</u> while Japan evaluates <u>below 100 MV/m</u>. These studies are complementally and offer a baseline idea for linear collider application.